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ABSTRACT: The method of moments (MOM) is applied to solve elec-
tromagnetic (EM) scattering problems in spherically multilayered media.
A spectral-domain dyadic Green’s function (DGF) in a spherically mul-

tilayered medium is constructed in terms of the spherical vector wave
functions by using the method of scattering superposition in the spheri-

cal coordinate system. Its expression is later transformed to that in the
Cartesian coordinate. We discretize the computational domain which
contains the scatterer into N size-independent cells in the Cartesian

coordinate. Based on the transformed DGFs, the volume integral equa-
tions can be solved by MOM combined with Krylov subspace iterative

methods. In this letter, we choose the bi-conjugate gradient stabilized
(BCGS) iteration method due to its fast convergence. Numerical results
compared with FDTD solutions from a commercial software are pre-

sented to validate the accuracy and efficiency of our method. VC 2017

Wiley Periodicals, Inc. Microwave Opt Technol Lett 59:526–530, 2017;

View this article online at wileyonlinelibrary.com. DOI 10.1002/

mop.30335

Key words: method of moments; bi-conjugate gradient stabilized

algorithm; spherically layered media; volume integral equation

1. INTRODUCTION

Electromagnetic (EM) scattering problems in spherically multi-

layered media are important for many applications, such as geo-

physics exploring, microwave imaging, target identification and

nondestructive testing. The method of moments (MOM) [1,2] is

widely used to solve EM scattering problems and has been suc-

cessfully applied for planarly layered background media [3].

The dyadic Green’s function (DGF) is the kernel part of the

MOM. Previously, intensive investigations [4–8] have been

done to obtain a closed form DGF for spherically multilayered

media. However, scattering problems from inhomogeneous

objects of arbitrary shapes embedded in a general spherically

multilayered medium are scarce in spite of their wide applica-

tions. The purpose of this letter is to develop an efficient solu-

tion for EM scattering from inhomogeneous objects in a general

spherically multilayered medium. The DGF in a spherically lay-

ered medium is constructed in terms of the spherical vector

wave functions [4,5] by using the superposition in the spherical

coordinate system. The non-converging phenomenon of the

DGF is eliminated by replacing the series formulation with an

analytic form of the unbounded DGF [8]. The expression of the

DGF in the spherical coordinate is later transformed to its

expression in the Cartesian coordinate. With this transformed

DGF for the spherically multilayered media, the scattering prob-

lems formulated by the volume electric field integral equation

(EFIE) in the Cartesian coordinate can be solved through using

MOM.

The EFIE is discretized into a linear system with a number

of unknowns by employing the MOM. Krylov subspace iterative

methods are applied to replace the direct matrix inverse which

normally has a high computation cost. In our work, we use the

Bi-Conjugate Gradient Stabilized (BCGS) iteration method to

solve the linear system. The BCGS method, presented in Ref.

[9] for matrix equations, converges faster than the Conjugate

Gradient (CG) [10] method, and smoother than the Bi-

Conjugate Gradient (BiCG) method [11].

The method we proposed here can compute the EM scatter-

ing from inhomogeneous objects of arbitrary shapes entirely

embedded in any layer of a spherically multilayered medium

which can have an arbitrary number of layers. In this letter, we

use a simple case to validate our method. We assume the scat-

terer is a homogeneous cube and is buried in the middle layer

of a three spherically layered medium which has distinct permit-

tivity, permeability and conductivity of each layer. The BCGS

iteration method is chosen to solve the EFIE. The solved total

electric fields inside the computational domain and the scattered

fields in the outmost layer are compared with the FDTD solu-

tions from a commercial software to validate the accuracy and

efficiency of our solver.

2. FORMULATION

The geometry of the EM scattering problem is illustrated in Fig-

ure 1, where an inhomogeneous dielectric object of arbitrary

shape is completely buried in a spherically multilayered medium

that has m layers, each of which has distinct permittivity, con-

ductivity, and permeability ei;li;rið Þ. The complex permittivity

is defined as �ei5ei1ri=jx. There is no restriction on the number

of the background layers. The impressed sources and receivers

can distribute all over the space. In this letter, we consider the

condition that the impressed sources are located in the outermost

layer (extending to unbounded). The objective of this work is to

solve the scattering problems due to a delta electric dipole in

spherically layered media. We assume that the scatterer is con-

tained in a rectangular domain in the ith layer denoted by D.

2.1. Volume Electric Field Integral Equation
As shown in Figure 1, in a spherically multilayered medium, an

inhomogeneous dielectric scatterer of arbitrary shape is entirely

buried in the ith layer. The scattered field Escat(r) is the differ-

ence between the total electric field Etot(r) and the incident field

E
inc(r), or
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EscatðrÞ5EtotðrÞ2EincðrÞ (1)

where r is the position vector in the three dimensional space,

and Einc(r) is the electric field in the absence of the scatterer

but with the presence of the spherically layered background.

The scattered field Escat(R) satisfies the following equation

EscatðrÞ5
ððð

VD

GEJðr; r0Þ � Jeqðr0Þdr0 (2)

where the tensor �GEJ r; r0ð Þ represents the electrical field DGF in

the position of r due to the electric dipole in the position of r0.
According to the volume equivalence theorem, the volume

equivalent sources Jeq r0ð Þ inside the D domain is proportional to

the total electric field, or

Jeq r0ð Þ5jxebve r0ð ÞEtot r0ð Þ (3)

where ve r0ð Þ5 e r0ð Þ2eb r0ð Þð Þ=eb r0ð ÞÞ denotes the permittivity

contrast, and the subscript b represents the background parame-

ters in the absence of the scatterer. It is obvious that the volume

equivalent electric sources are nonzero only inside the scatterer.

Thus, the Eqs. (1) and (2) can be rewritten as

EincðrÞ5EtotðrÞ2jxeb

ððð
VD

GEJðr; r0Þ � veðr0ÞEtotðr0Þdr0 (4)

Total fields can be obtained by solving the integral equation

above as long as the DGF is acquired.

2.2. General Expression of Electrical Dyadic Green’s Function
To obtain the electrical DGF in spherically multilayered media,

two methods are usually applied for the mathematical deriva-

tions. One is to construct the DGF using coordinate tensors [12]

while the other is represented by the vector wave functions

[4,5]. According to Li’s previous work [4,5], the electrical DGF

for spherically multilayered media can be written as

G
fs

e ðr; r0Þ5G0eðr; r0Þds
f1G

fs

esðr; r0Þ (5)

where ds
f denotes the kronecker delta, the unbounded �G0e r; r0ð Þ

represents the contribution of the direct waves from electric

dipole, while the scattering �G
fs

es r; r0ð Þ depicts an additional con-

tribution of multiple reflected and transmitted waves in various

layers. The subscript f and the superscript s denote the layers

where the field vector position r and the source vector position

r0 are located, respectively. The mathematical expressions of the
�G

fs

e r; r0ð Þ can be found in Ref. [4]. However, this DGF is not

convergent when r5r0. This problem is solved by replacing the

series formulation with an analytic form of the unbounded DGF

[8]. In this way, the scattered field in any position can be com-

puted using Eq. (2), even when the equivalent source expressed

by Eq. (3) is overlapped to the field point.

Figure 1 An inhomogeneous object of arbitrary shape buried in a

spherically multilayered medium

Figure 2 The Cartesian coordinate system and the spherical coordinate

systems used in observations and sources points

Figure 3 A homogeneous cubic scatterer buried in the middle layer of

a three spherically layered medium
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The aim of this letter is to develop an efficient solution for

the EM scattering problems in spherically multilayered media.

However, direct discretization of the computational domain in

the spherical coordinate is difficult. Thus, we discretize it in the

Cartesian system and transform the expressions of the Green’s

functions solved using Eq. (5) to their expressions in the Carte-

sian coordinate system. In this way, EM scattering problems in

spherically multilayered media can be solved by MOM com-

bined with Krylov subspace iteration method in the EFIE formu-

lated in the Cartesian coordinate system, which, however, has

been successfully used to solve EM scattering problems in pla-

narly layered media [3].

A DGF consists of nine scalar elements Gxi;xj
placed in a 3 3 3

tensor matrix, where i; j 2 1; 2; 3f g and xi denotes the basis vector

in different coordinate systems in the three dimensional space

( x; y; zf g in the Cartesian coordinate and r; h;uf g in the spherical

coordinate). Each element decides the effect of an electric dipole

source along xj on the field component along xi. In the Cartesian

coordinate, the basis vectors are the same for both the expressions

of current sources at the source point and those of fields at the obser-

vation point. However, in the spherical coordinate, the current

source at the source point is given in source coordinates r0; h0;u0ð Þ
while the field at the field point is expressed in the filed coor-

dinates r; h;uð Þ. These two local coordinates are the same only if

the field point, the source point and the origin location in one

straight line, which means h5h0 and u5u0.
As illustrated in Figure 2, the basis vectors in the spherical

coordinate system at the source and observation points are dif-

ferent. First, the rotation matrix �g h;uð Þ that transforms the vec-

tor in the spherical coordinate to that in the Cartesian system is

defined as following

x̂

ŷ

ẑ

2
664
3
7755

sin hcos / cos hcos / 2sin /

sin hsin / cos hsin / cos /

cos h 2sin h 0

2
664

3
775

r̂

ĥ

/̂

2
664

3
7755g

r̂

ĥ

/̂

2
664

3
775 (6)

Thus,

Gxr0 Gxh0 Gx/0

Gyr0 Gyh0 Gy/0

Gzr0 Gzh0 Gz/0

2
664

3
7755g

Grr0 Grh0 Gr/0

Ghr0 Ghh0 Gh/0

G/r0 G/h0 G//0

2
664

3
775 (7)

Similarly,

Gxr0 Gxh0 Gx/0

Gyr0 Gyh0 Gy/0

Gzr0 Gzh0 Gz/0

2
664

3
7755

Gxx0 Gxy0 Gxz0

Gyx0 Gyy0 Gyz0

Gzx0 Gzy0 Gzz0

2
664

3
775g0 (8)

Through applying Eqs. (7) and (8), we can easily show that the

relationship between the DGF in the Cartesian coordinate and

that in the spherical coordinate satisfies the following equation

Gxx0 Gxy0 Gxz0

Gyx0 Gyy0 Gyz0

Gzx0 Gzy0 Gzz0

2
664

3
7755g

Grr0 Grh0 Gr/0

Ghr0 Ghh0 Gh/0

G/r0 G/h0 G//0

2
664

3
775g21 (9)

Note that �g h;uð Þ is an orthogonal matrix. Therefore, �gT h;uð Þ
can be used to replace �g21 h;uð Þ. The above equation can be

simplified to the following format

Figure 4 Electric fields inside the cuboid. (a) Real part of incident field Einc
z at z 5 4:025 m. (b) Imaginary part of incident field Einc

z at z 5 4:025

m. (c) Real part of total field Etot
z at z 5 4:025 m. (d) Imaginary part of total field Etot

z at z 5 4:025 m. [Color figure can be viewed at wileyonlineli-

brary.com]
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Gcarðr; r0Þ5gðh;/ÞGsphðr; r0ÞgTðh0;/0Þ (10)

where �Gcar represents the DGF in the Cartesian coordinate and
�Gsph stands for the DGF in the spherical coordinate.

2.3. Discretization and Iterative Solver for the Discrete System
In this paper, we use the delta function as the testing function and

the pulse function as the basis function to discretize the EFIE into a

linear system. We assume the D domain containing the object is

divided into Nx3Ny3Nz size-independent cells in the Cartesian

coordinate. After discretization, the EFIE is transformed into a dis-

crete linear system that can be solved via Krylov subspace iteration

method. The BCGS method is employed here to solve the linear Eq.

(4). For the volume integral equation, it has been proved by Xu

et al. [8] that the BCGS method converges much faster than CG

[10] and BiCG [11]. The following numerical results also show the

accuracy and efficiency of our method.

3. NUMERICAL RESULTS

In order to validate our solver for the EM scattering in spheri-

cally multi-layered media, we compare the solutions by using

the BCGS iteration method and the results from FDTD

simulations by using the commercial software Wavenology EM.

Figure 3 shows the geometry of a two spherically layered

dielectric sphere located in air with the radius of r1510:0 m

and r255:0 m. The layered sphere is located at 0; 0; 0ð Þ m. Con-

sidering the existing of air, we treat it as a three spherically lay-

ered background. A homogeneous dielectric cuboid with the

dimensions Lx5Ly5Lz51:5 m is entirely embedded in the mid-

dle layer of the background. The center of the cuboid is located

at 4:25; 4:25; 4:25ð Þ m. The electric parameters of the cuboid

are erx54:0, rx5 0:002 S/m, lrx51:0. The space is character-

ized by er151:0, lr151:0, r15 0:0 S/m, r1510:0 m, er252:0,

lr251:0, r25 0:001 S/m, r255:0 m, er354:0, lr351:0, and r3

5 0:001 S/m. The electric dipole source is in the r̂ direction,

i.e., J5r̂d r2r0ð Þ, where r05 8:0; 8:0; 8:0ð Þ m represents the

source location in the spherical coordinate system. The operat-

ing frequency of the dipole is 50 MHz. The location of observa-

tion points in the outmost layer is a function of h at the arc

of r 5 12 m, u 5 p=4. For convenience, we let the computa-

tional domain be the same as the cuboid. And we discretize this

domain into Nx5Ny5Nz510 uniform cells, with the dimension

of each cell dx 5 dy 5 dz 5 0:015 m. The wavelength inside

the cuboid is about 2:986 m. Thus, the sampling rate is about

20 points per wavelength (PPW). For a fair comparison, we use

the same sampling rate in FDTD simulations.

Figures 4(a) and 4(b) show the comparisons of the z component

of incident electric fields in the XY plane at z 5 4:025 m inside

the cuboid near the center between the solutions by using our

MOM solver and the results from the FDTD simulations. Figures

4(c) and 4(d) depict comparisons for the total electric fields in the

same positions as for the incident fields. Figures 5(a) and 5(b) show

the comparisons of the scattered electric fields in the receivers

located in air as a function of h at the arc r 5 12 m, u 5 p=4.

Both the total electric fields inside the cuboid and the scattered

electric fields in the receivers show good agreements between our

MOM solver and the FDTD simulations. Figure 6 shows the residu-

al error versus the number of iteration steps in the BCGS algorithm

for the solutions of the total fields inside the cuboid. It is only takes

six iterations of our method to make the relative residual error less

than 0:05%. The BCGS method is accurate and efficient for the

EM scattering problems in spherically multilayered media.

4. SUMMARY

The main contribution of this letter is the development of a

MOM solver combined with the Krylov subspace iteration meth-

od for the EM scattering problem of inhomogeneous objects

Figure 5 Electric field in receivers located in air. (a) Real part of scattered field Escat
z at the arc of r 5 12 m, u 5 p=4. (b) Imaginary part of scat-

tered field Escat
z at the arc of r 5 12 m, u 5 p=4. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 6 Residual error versus the number of iteration steps. [Color

figure can be viewed at wileyonlinelibrary.com]
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buried in spherically multilayered media. The DGF in spherical-

ly multilayered media is constructed in terms of the spherical

vector by using the method of scattering superposition in the

spherical coordinate. These expressions were later transformed

to the expressions in the Cartesian coordinate system. The com-

putational domain is discretized in the Cartesian coordinate sys-

tem and the EFIE in this system was solved by using the BCGS

iteration method. Numerical results validate the accuracy and

efficiency of our method to solve the scattering problems in

spherically multilayered media.
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ABSTRACT: In this letter, an architecture is presented to solve prob-

lems of classical concurrent dual-band Doherty power amplifiers

(DPAs) and its design procedure is given. It is a codesign of two single-

band DPAs and four filters. Two of filters at the output port are used
for impedance transformation, harmonic components suppressing and
signal isolating, while the another two split concurrent dual-band sig-

nals at the input port. In this way, intermodulation components of the
two bands can be effectively suppressed and each band can achieve a
good performance as single-band one’s. This design concept is demon-

strated through implementing of a practical dual-band DPA operating at
1.8 and 2.5 GHz. Measurement results show that efficiencies are 65.0

and 56.3% at the 6 dB output power back-off for concurrent application.
The intermodulation components and harmonic components are lower
than 240 dB except second harmonic component at 1.8 GHz (232 dB).
VC 2017 Wiley Periodicals, Inc. Microwave Opt Technol Lett 59:530–

533, 2017; View this article online at wileyonlinelibrary.com. DOI

10.1002/mop.30330

Key words: dual-band; two-way; doherty; filter; concurrent

1. INTRODUCTION

POWER amplifier (PA) is an energy consuming component in

the wireless communication systems. While the conversion effi-

ciency is still not satisfied in that it is meaningful for broadband

or multi-band PAs research [1–5]. Considering wide-band sig-

nals with high peak to average power ratio (PAPR), Doherty

power amplifier (DPA) is naturally became a good choice

because it has another peak efficiency at the output power back-

off (OBO) region resulting in higher efficiency for high PAPR

signals. Dualband DPAs are more competitive than wide-band

ones for concurrent dual-band application, since it has larger

possibility to achieve a better performance. However, the perfor-

mance of traditional dua-band DPA is still incomparable with

narrow band DPA, such presented in [6–8]. Under the concur-

rent mode, traditional dual-band PAs [9,10] have lower gain

than single mode and will generate harmful intermodulation

components. This is non-negligible issue [11]. In view of the

these factors, an architecture who contains two DPAs and four

filters is proposed to solve these problems. The filters with sim-

ple structure possess characteristics of harmonic suppressor,

impedance transformer and duplexer, and become a part of

DPA’s matching network. To prove this architecture, theory

analysis and a design example are given in this article.

2. ANALYSIS OF THE PROPOSED ARCHITECTURE

The proposed architecture is displayed in Figure 1. This DPA

contains two ways, each of which has two parts (two filters and

a DPA named as Sub-DPA) and it only operates on a band.

Figure 1 The simplified block diagram for the proposed two-way con-

current dual-band Doherty. [Color figure can be viewed at wileyonlineli-

brary.com]
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